88 620 CHARACTERIZING KRIPKE STRUCTURES mnm. LOSICCY) 11
CMGIE IELLON Wl v P TTSDURBH Pﬂ DEPT OF COMPUTER
T AL. DEC 87 CHU~CS-O7-1.4
UNCLASSIFIED KII[-TR 9?-11‘8 F33613-84-K-1320 G 12/3

s
g

-

1 Sg8 Se¥ xt

MY MIR RN RIS X AN IS

- l" .h Tl qh-.-lf' W
~

BT)

- oo o ¥
-

SNNENNE Lo SR WY 1 A
| L K b . > P 1t
s P b ‘....r.‘wsw 2 oL !

-

E N T
'
14
’
v

=
O
e -
e
s

——
—_———

HH ddaa, \an
- ‘ _ =~= -
————] ’o - =E
_— = =1

._’,'

PHOTOGRAPH THIS SHEET

/

LEVEL INVENTORY i

RFUWRL-TR-87-//65 |

DOCUMENT IDENTIFICATION

Dec 1927 3

DTIC ACCESSION NUMBER

AD-A188 620

DISTRIBUTION STATEMENT

ACCESSION FOR

NTIS GRA&I :
DTIC TAB _ DTl C 3
UNANNOUNCED D .

JUSTIFICATION ELECTE R
R\, FEB 091388
5Y o E

DISTRIBUTION / :
AVAILABILITY CODES . .

DIST AVAIL AND/OR SPECIAL

DATE ACCESSIONED

- ot ;
A j St) by

DISTRIBUTION STAMP \w*f

DATE RETURNED

48 2 05 099 -

DATL RECEIVED IN DTIC REGISTERED OR CERTIFIED NO. R
J
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDAC "
DTIC £omy, 70A DOCUMENT PROCESSING SHEET EREOLR DALY o vt U

o el v PRI SRS A DY > A " N \y‘\'(\ f-'

PR T Fpd i apV Rl y v Al X RN -\'.Q-.’g A' - o\ - v, 4 . : LW g 0 Y . - 5 » v ‘ada
,1\y
(RN
. 'y

AFWAL-TR-87-1168

CHARACTERIZING KRIPKE STRUCTURES IN TEMPORAL LOGIC

M.C. Browne, E.M, Clarke and 0. Grumberg

Carnegie-Mellon University
Computer Science Department ps
Pittsburgh, PA 15213-3890 .ﬁ

AD-A188 620

December 1987

Interim &=

Approved for Public Release; Distribution is Unlimited “ﬁir
>
N

SISV
L]

AVIONICS LABORATORY e
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

P NURIT ST SR LA L SRS RLY WIN.7 B TT W T W) L T PUR PO PO T WA TR T UL ATV AR UK TUR T PR T T \J 3a ath oS

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than 1in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

ke o o) Biedlnst 2 s

CHAHIRA M. HOPPER RICHARD C. JONES.
Project Engineer Ch, Advanced Systems Research Gp
Information Processing Technology Br

FOR THE COMMANDER

Ll L TG

EDWARD L. GLIATTI
Ch, Information Processing Technology Br
Systems Avionics Div

If your address has changed if you wish to be removed from our mailing
list, or if the addressee is no longer emploved by your organization please

notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-4543 to help us maintain
a current mailing |1st

Copies of this report should not be returned unless return is required by
security corsiderations, contractual obligations, or notice on a specific
document.

P

15 AN

- P

-
"

P ¢

T L L PN

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION /AVAILABILITY OF REPORY
Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU-CS-87-104

5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWAL-TR-87-1168

62. NAME OF PERFORMING ORGANIZATION
Carnegie-Mellon University

6b OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION .
Air Force Wright Aeronautical Laboratories

AFWAL/AAAT-3

6¢. ADDRESS (City, State, and ZIP Code)

Computer Science Dept
Pittsburgh PA 15213-3890

7b ADDRESS (City, State, and ZIP Code)
Wright-Patterson AFB OH 45433-6543

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F33615-84-K-1520

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO I NO NO ACCESSION NO
61101E 4976 00 01

11. TITLE (Include Security Classification)

Characterizing Kripke Structures In Temporal Logic

12. PERSONAL AUTHOR(S)
M. C. Browne, E. M. Clarke, 0. Grumberg

13a. TYPE OF REPORT 13b TIME COVERED
Interim FROM TO

14. DATE OF REPORT (Year, Month, Day) 1S PAGE COUNT
1987 December 23

16. SUPPLEMENTARY NOTATION

17. COSATH CODES
FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT

& uncLassirieorunuMiTED [SAME AS RPT (J oTic USERS

21 ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL
Chahira M. Hopper

22b(gElL§)Pb4%g%(_Iq;I8ug§ Area Code) 22&}_%[{*‘(;“?95

DD Form 1473, JUN 86

Previous editions are obsolete

Unclassified

SECURITY CLASSIFICATION OF ThiS PAGE

UL,

R
.

B Ia A f WA ey

4‘1‘.

..\._’. “‘..

RS

e e ¥ 8 € 8
.

’,

L

Jd

Wi NI

‘e %e Ty e e e Y

TABLES OF CONTENTS

1. Introduction .

2. The Logics CTL and CTL

3. Equivalence of Kripke Structures

4, Equivalence With Respect To Stuttering
5. Algorithm For Stuttering Equivalence
6. Conclusion '

PP . n R R R T RSN L
o a0 .‘o\h\ (JUA IR o o~ 2 AT TS AN M AN NN Y

5 8 s 0 B o

'!?Tiier

O AT AT s

mmmmx—. > ;

LIST OF FIGURES

Figure 3-1: A Kripke structure in which cvery other state is labelled A4 ‘ 5

LB AR

PR LI

s < 7 s

L]
Iy

vi

-
0 » T LT Py T S T N N T T S T N T L RN e elelre
N '\','J' \‘?‘I.n'§ .'r."‘u‘. AR s 8 o)OO o) W, a i‘u * '.'. ey L oms Lo PGSR o S Ps

{ £
P Y
Characterizing Kripke Structures in Temporal Logic E‘.
M. C. Browne &
E. M. Clarke :’;
oS
0. Griimberg iﬁs
Carnegic Mellon University, Pittsburgh fatyy
1. Introduction M
[’I‘he question of whether branching-time temporal logic or linear-time temporai logic is best for reasoning Ef'. '
about concurrent programs is one of the most controversial issues in logics of programs. Concurrent C:_
programs are usually modelled by labelled state-transition graphs in which so/me state is designated as the ;'
initial state. For historical reasons such graphs are called Kripke structures{8} fn linecar temporal logic, :E
operators are provided for describing events along a single time path (i.e., along a single path in a Kripke §Q
structure). In a branching-time logic the temporal operators quantify over the futures that are possible from a ;C‘
given state (i.e., over the possible paths that lead from a state). It is well known that the two types of temporal -
logic have different expressive powers «{4}{9P: Linear temporal logic, for example, can express certain ":",
fairness properties that cannot be expressed in/b_rigc_hi’ngfjtime temporal logic. On the other hand, certain {:
practical decision problems like model checking {{3}{161) are easier for branching-time temporal logic than ~%1
for linear temporal logib ’ ' X
e T T vhe. o

) = 1n this paperwe provide further insight on which type of logic is best. We-show that if two finite Kripke \ -

' structures can be distinguished by some formula that contains both branching-time and linear-time operators, : N
then the structurcs can be distinguished by a formula that contains only branching time operators. :_'
Specifically, we show that if two finite Kripke structures can be distinguished by some formula of the logic ::\.'_
CTL" (i.e., if there is some CTL formula that is true in one but not in the other), then they can be :}:f
distinguished by some formula of the logic CTL. The logic CT L' ([3], [4D is a very powerful temporal logic E:
that combines both branching-time and linear-tin;e operators; a path quantifier, either A ("for all paths™) or E ',‘ .
("for some paths”) can prefix an assertion composed of arbitrary combinations of the ususal linear time
operators G ("always™), F ("sometimes”), X ("nexttime"), and U ("until”). CTL ({1}, [2]) is a restricted subset :j'.._'
of CTL" that permits only branching-time opcrators--each path quantifier must be immediately followed by ,:l:_
exactly one of the operators G, F, X, or U. \

Our goal is to show that for any finite Kripke structure M, it is possible to construct a CTL formula Fj, that J-":i
-

This research was partially supported by NSF Grant MCS-82-16706. The third author, O Grumberg, is currently on jeave from N

Technion, Haifa and is partally supported by a Weizmann postdoctoral fellowship. ::.:

X

N

A Pt A g A e n o e P T AT g Sn A p e g AN St s N e as e
ORI AR A AL W T o fa o PRI S RS s N L _

uniquely characterizes A/, Since one Kripke structure may be a trivial unrolling of another, we usc a notion of

cquivalence between Kripke structures that is similar to the notion of bisimulation studicd by Milner [12]. We
say that states s and s* are equivalent if they have the same labelling of atomic propositions and for cach
transition from one of the two states to some state ¢ there is a corresponding transition from the other state to
astate ¢/ that is equivalent to «. Two Kripke structures are equivalent if their initial states are cquivalent. [tis

not difficult to prove that if two Kripke structures are cquivalent, then their initial statcs must satisfy the same

CTL.

An obvious first attempt to construct F, is simply to write a CTL formula that specifies the transition
relation of M. For each state s in M we include in Fj, a conjunct of the form

AG(L(s)= AEXL(s;) A AX(V L(s,)))
{ !

where s,, . .. s, are the successors of s and L(¢) is the labelling of atomic propositions associated with state .
It is easy to see, however, that this simple approach cannot work in general: several states in A may have

exactly the same labelling of atomic propositions.

Instead, we first show that it is possible to write a CTL formula that will distinguish between two states in
the same structure that are not equivalent according to the above definition. Two inequivalent states may have
exactly the same labelling of atomic propositions, they may even have corresponding successors, but the
computation trees rooted at those states must differ at some finite depth. The difference in the computation
trees can be exploited to give a CTL formula that distinguishes between the states. Since equivalent states
satisfy the same CTL" formulas, it follows that if two states can be distinguished by a CTL' formula, they can
be distinguished by a CTL formula. Once we can distinguish between inequivalent states in the same
structure, we can write a single CTL formula that encodes the entire Kripke structure; this formula is the Fy,
that we seek.

The above construction requires the use of the nexttime operator in specifying Fy,. In reasoning about
concurrent systems, however, the nexttime operator may be dangerous, since it refers to the global next state
instead of the /ocal next state within a process [10]. What happens if we disallow the nexttime operator in
CTL formulas? The proof, in this case, requires another notion of equivalence--equivalence with respect to
stuttering. We say that two state sequences correspond if each can be partitioned into finite blocks of
identically labelled states such that each state in the i-th block in one sequence is equivalent to each state in
the i-th block of the other scquence. Thus, duplicating some state in a sequence any finite number of times
will always result in a corresponding sequence. We say that two states are equivalent if for each state sequence
starting at onc there is a corresponding state sequence that starts at the other. Under this second notion of

equivalence the proof of the characterization thcorem becomes much more complicated. since it is possible

ﬁ" ol d'f.‘-" f.f:"-" T e N

PEPIR PLURATRI

'.'{.‘.' Y0 ’

LK

for two incquivalent states to have exactly the same finite behaviors (modulo stuttering), but different infinite

behaviors.

Equivalence under stuttering turns out to be quite uscful for reasoning about hicrarchically constructed
concurrent systems. In determining the correctness of such a system by using a technique like temporal logic
model checking (2], [3), [11], [13], [16], [17]). it is often dcsirable to replace a low level module by an
cquivalent structure with fewer states. Our results show how this can be done while preserving all of those
properties that are invariant u.nder stuttering. We give polynomial algorithms both for determining if two
structures are equivalent with respect to stuttering and for minimizing the number of states in a given

structure under this notion of equivalence.

Finally, our results have some interesting implications for the problem of synthesizing finite state
concurrent systems from temporal logic specifications ((2], [14]). In order to guarantee that any Kripke
structure can be synthesized from a specification in linear temporal logic, Wolper [18) was forced to introduce
more complicated operators based on regular cxpressions. Our results show that (at least in theory) no such
extension is necessary for branching-time temporal logic. Any Kripke structure can be specified directly by a
formula of branching-time logic.

The expressive power of various temporal logics has been discussed in several papers; sce ([4], [9]) for
example. Hennessy and Milner [7), Graf and Sifakis [6], and Pnueli [15] have all discussed the relationship
between temporal logic and various notions of equivalence between models of concurrent programs.
However, we believe that we are the first to show that it is possible to characterize Kripke models within

branching-time Jogic and to investigate the consequences of this result.

Our paper is organized as follows: In Section 2 we describe the logics CTL and CTL". 1n Section 3, we state
formally what it means for two states in a Kripke structure to be cquivalent and prove that equivalent states
satisfy exactly the same CT L" formulas. Section 3 also contains the first of the two main results of the paper:
we show how to characterize Kripke structures using CTL formulas with the nexttime operator. Section 4
introduces the second notion of equivalence (cquivalence with respect to stuttering) and shows that if the
nexttime operator is disallowed, then equivalent states again satisfy exactly the same CT L" formulas. We also
extend the characterization theorem of Section 3 to Kripke structures with the new notion of equivalence. In
Section 5 we give a polynomial algorithm for determining if two states are equivalent up to stuttering. The
paper concludes in Section 6 with a discussion of some remaining open problems like the possibility of

extending our results to Kripke structures with fairness constraints (i.e., Biichi Automata).

~ . v N tan

YA

.“_ _
e :

15

o, 5 4
_' .'- C L

N

Iy

2Rl A AL Y
f.;i'!r{&-)

» S %y
LR
. -

A"‘
R

P e

¢

~ -
LS

AV SN

P]
44
Ll.'

LAY

Sty

- £,
v

o e
2
. ;

Ry

220
yra s,

R

. -,';
¢, 2

N € 8 o g W™ A G T I S ‘;n'l" A T G T AT T T R --\“\‘u*-‘.-. LR VT P
N D T A N T AT NN S T e OO I A W AN RN S AT N IR NS ROLN

R
U O

2. The Logics CTL and CTL"

There are two types of formulas in CT L" sute Sormudas (which aic true in g speafic state) and path '
Jormulas (which are true along a specific path). Let AP he the set of womic proposition names. A\ state -
formula is either:

o A,if Ac AP, A

o If fand g are state formulas, then =~/ and fVvg are state formulas.

o If f is a path formula, then E(() is a state formula. ’
A path formula is either:

o A state formula.

o If fand g arc path formulas, then = f fvg. X/ and # U ¢ il ' omuiay

Py

CTL" is the set of state formulas generated by the above rules

CTL is a subset of CTL in which we restrict the path tormulas o be

o If £ and g are state formulas, then X fand /U g are path formulas
o If fis a path formula, then sois - f

We define the semantics of both logics with respect to a structure M = <5, R, L>. where

e S'is a set of states.
e RC_SXS is the transition relation, which must be total. We write 5, — s, t indicate that (s,.5,) € R.
o L: S—+P(AP) is the proposition labeling. 3

% % S e e

Unless otherwise stated, all of our results apply only to finite Kripke structures.

S AT SR PE N 4

We only consider transition relations where every state is reachable from the inital state. We define a path

f

in M to be a sequence of states, # = ,s,, ... such that for every i20, 5;—s,, . =’ will denote the suffix of =
starting at s;.

£,

We use the standard notation to indicate that a state formula f holds in a structure: M.sk=fmeans that f
holds at state sin structure M. Similarly, if f is a path formula, M,#» = fmeans that f holds along path # in

structure M. The relation F= is defined inductively as follows (assuming that £, and f, are state formulas and

IR ARSI

g,and g, are path formulas):
l.sk=A = Ael(s).
2. sk=f, = skefl.
.sk=fve = sk=florsk=f,.

, O AR AN A S I L AT AN . A A A R A AN A AT A
) p SO e NN LR AL L e . S SR Sl i T A S P S
.A"‘l MO) *n" u.. « J‘ .' () L o> A v » P J B I g

PO J.“'.']

A A A N e QNI G o s M W C o O

N PP PR TN WO LT WO UW W UW U VW L U U UF U LS TV U U URT TR TR LA LR U U IR IR R AT

5
4.s=E(g) = there exists a path o starting with ssuch that # = g,.
S.wk=f = sis the first state of 7 and sF= .
6. mw k=g = awkeg.
1. 7kF=gVeg, = wkEgornkFg,.
8. wk=Xg = n'kg.
9.mk=gUg = therecxistsak>0suchthat »*F=g, and forall 0<j<k w/k=g.

We will also use the following abbreviations in writing C L’ (and CT 1.) formulas:

o fAg = (fV—y) o Ff = true Uf
e A(S) = ~E(~f) e Gf = —F~f.

3. Equivalence of Kripke Structures

Given two structures M and M’ with the same sct of atomic propositions AP, we define a sequence of

equivalence relations £, E,,... on SXS’ as follows:
0 *~1

e sE;s’ if and only if L(s)=L(s").

osE,, . s’ ifand only if

o L(s)=L(s’),
o Vsfs— 5= As![s' — s/ As, E, /]l and
o Vsjls' — s = dsls— 5;A5, E,s{ .

Now, we define our notion of equivalence between states. sEs’ if and only if sE;s’ for all i>0.

Furthermore, we say that M with initial state s, is equivalent to M’ with initial state sg iff 5, £'sg.
Lemma 1: Let sEs’, then for every path, s.s,, . . ., there exists a path, s’ s, ... such that Vils;Es)

Proof: Note first that £, , C E,. Since E, is finite, there must be a k such that £} | = E, = E.Thus,
we can substitute E for E in the definition of Ej ., giving sE's’ if and only if

o L(s)=L1(s')
o Vsls— s,= Is/[s’ = 5/ As, E,s!]].and

o Vsly =5/ = ds[s— s,As,E, 5.

The remainder of the proof is a straightforward induction on the length of the path. O

LR I PR)

N A O R R S R .

-

[ERna s

AR IR
’5’\1':"-’1"'5

LA LR

’)

il SN AN

A .“'a'g

NS N

Theorem 2: If s£s’. then Ve CTL [sk= fe= s = f).

This theorem is a consequence of the following lemma:

Lemma 3: Lct h be cither a state formula or a path formula. Let o = s5,,. ..
w’ =s'.s|.... beapathin M’ such that s £s’ and Vi [s;Es’]. Then

sE=hes s’F= A if his a state formula and
7= he q/k=h, if his a path formula.

Proof: We pro . the theorem by induction on the structure of A.

Base: 7 = A. By the definition of E, skEE A= 5/ = A.

Induction: There are several cases.

L. h=~h,, astatc formula.
sEEhe sk h
= s’ B h, (induction hypothesis)
=s'Fh

The same reasoning holds if 4 is a path formula.

2. h=hV h,, a state formula.

Without loss of generality,
sFEhes sk hor sk hy
=skFh
= s’ F= h, (induction hypothesis)
=5 F=h

The argument is the same in the other dircction. We can also use this argument if 4 is a path

formula.

3. h=E(h,), a state formula.

Suppose that sF= 4. Then there is a path, #, starting with ssuch that = = h. By Lemma 1, there
is a corresponding path #{ in M’ starting with s’. So by the induction hypothesis, 7, == h,
= m; = h. Therefore, sk E(h) = s’ F=E(h). We can use the same argument in the other

direction, so the lemma holds.

N S 0 L
s R, R KA Aty LA R 1A LA LR A

be a path in Af and

-

- u .\‘ % \}\‘}‘\}_\ _-.'._\. Wt P
fon o >

[)

\..".) AW "-N';.v.,' - R

%

I PCIrTY o 1 4 0 4 TR > @ut 4ob 5.9 . . g > $at s b * » COPLN TR P PR ™) & B bal B0%

4. h= h,, where his a path formula and A, is a state formula.

Although the lcﬁgths of hand h, arc the same, we can imagine that A = path(h,), where path is an
operator which converts a state formula into a path formula. Therefore, we are simplifying & by

dropping this path operator. So now:
nFhe=skh
= s’ = h, (induction hypothesis)
=q'F=h

The reverse direction is similar.
5. h=X h,, a path formula.

By the definition of the next-time operator, #' k= k. Since # and #’ correspond, so do #* and
a’'. Thereforc, by the inductive hypothesis, 7’ = h, so n’ F= h.

We can use the same argument in the other direction.
6. h=h,U h,, a path formula.

Suppose that 7 = 5 Uh,. By the definition of the until operator, there is a k such that =t = h,
and forall 0<j<k, n/k= h,. Since and 7’ correspond, so do o’ and #'/ for any Jj. Therefore, by
the inductive hypothesis, #/ * = h, and #*/ k= h, for all 0 < j< k. Therefore n’ k= h.

We can use the same argument in the other direction. O

Another property of two equivalent states is that they both have corresponding computation trees. For
every se€S, Tr,(s) is the computation tree of depth n rooted at s. Formally, Tr,(s) consists of a single node
which has the same label as 5. Tr,, (s) has as its root a node m with the same label as 5. If s has successors
8Sy in the Kripke structure, then node m will have subtrees Tr,(s,), Try(s,).

Two trees Tr,(s) and Tr,(s’) correspond (denoted Tr,(s) = Tr,(s’)) if and only if both of their roots have
the same label and for every subtree of depth n~1 of the root of one, it is possible to find a corresponding
subtree of the root of the other.

Lemma 4: sE,s’ if and only if Tei(s)=Tr;(s’) forall j<n.

: ' . B A p S P s "84 A St p t P m e Tt T SRR
T T T G G L Rt O LS N GO CR R LR A G S 7yt

.......

A

.l’ ,',V(.fﬁ{’f&’»:ﬁ‘))})-‘,"“-}-)"! FS SRS

P

S

C A

P L P e A

LL Ty ‘e

YR

o
2

Lemma 5: Given a finite sct of states s,.s, there exists a ¢ such that if two states 5; and s; arc not

E-equivalent then Tt (s;) and Tr.(s;) will not correspond.
We will call the value of ¢ for S the characteristic number of the structure.

We associate a CI'L formula with a tree Tr,(s) as follows:
e HTr(s)l=(pA ... ADIA(PgA ... =~q,). where L(s)={p,. ..., p tand AP=L(s)={q,..... q,}

o H{Tr,, (5)]= (AEX HTr,(s)]) A AX(VH[Tr (s)]) A F[Trg(s)). where s; is a successor of s.
Lemma 6: si=F[Tr,(s)] for all n20.

Lemma 7: If sk=%[Tr,(s*)), then Tr(s)=Tr(s").

Proof: The proof is by induction on . The basis case is trivial. Thus, we assume that n > 0. Lets;.s,, ..., Sp
be the sons of s in Tr,(s) and s].57. sq be the sons of s’ in Tr,(s").

It is easy to see that sand s’ have the same labelling of atomic propositions.

We must show that Tr,_ i(s,-u) corresponds to some Trp,(s}). Since skE=F[Tr(s")),
sk= AX(\j/ff['l‘r,,_l(sj)]). Since S is a successor of. s, S =9 Tr,,_,(sjb)] for some j. Hence,
Tr,- 1(s,-o) =Tr,- 1(556) by our inductive hypothesis.

Finally, we must show that Tr,,_l(si)) corresponds to some Tr,_,(s). Since s,E=F[Tr(s)],
sk /j\EXfF[Trp-,(s})} Since sjo is a successor of s, sk=EXJ| Tr,,_l(sjo)]. Therefore, there exists an j; such
that S = F(Tr,,_l(sjb)]. Hence, Tr,,_l(:,-o)= Tr,,_l(sjb) by our inductive hypothesis. O

Lemma 8: If s is a state in a Kripke structure M, then there is a CTL formula, C(M.s) that determines s up
to E-equivalence within M, i.e. C(M.s) is true in s and every state in M that is E-equivalent to s but false in
every state in M that is not equivalent to s.

Proof: We choose C(M,5)=F[Tr.(s)] where c is the characteristic number of M. C(M.s) is true in s and
hence in all states E-equivalent to s. Let s’ be a state that is not E-equivalent to s; then Tr.(s) # Tr.(s").
Hence, by lemma 7, s’ = C(M.s). O

Theorem 9: Given a Kripke structure M with initial state s, there is a CTL formula F(M.g) that
characterizes that structure up to F-equivalence, i.e. M’ s) = F(M.s) = s,Es;.

A A AR O NN

N

Proof: For any stte s in A4, let s,, be the successors of s. We define
G(M.s) = AG(C(M.9) = /'\ EX C(M.s) A AX \i/C(z\-l.s,-))
G (M s) describes all of the possible transitions from s. F(AL,s)) is the formula C(M.5) A AGMs). If two
structures M., and M’.sy are equivalent then by thcorem 2 they satisfy the sar;c formulas. Since
M.s = F(M.s), so does M’ 5.

For the other direction we show by induction on 7 that if M’ s == F(M.s)) then Tr,(5)=Tr(s}) for all
n20. By lemma 4, the two structures are then E-equivalent. J

Corollary 10: Given two structures M and M’ with initial states 5, and s} respectively, ,E'sf if and only if
VieCTL M s = fo M s, =),

Corollary 11: Given two structures M and M’ with initial states s, and s} respectively, if there is a formula
of CTL" that is true in one and false in the other, then there is also a formula of CTL that is true in the one
and false in the other.

We illustrate our method of characterizing Kripke structures with the example in figure 3-1.

%

Figure 3-1: A Kripke structure in which every other state is labelled A

The characteristic number of this structure is 1, since Tr(s) 52 Try(s,), Try(s,) 2 Tr(s,). and Tr(s) ZE Tr(s).
Let

o CM.5)=aA ~bAEX(aA =b) AEX(maAbB)AAX(aA-bV -aAb)

o C(M.5;)=a A ~bAEX(aA —b) A AX(a A —b)

AD 00 0 O GON . e At AR ot D
‘.’a.“r«"o."a.h\'w"‘ “"J‘r".‘%."l!"' !".O'- (LN A 4 ah i 20 A

L AANSG o} A () 5.0 F T % I
'.a"*,n“‘.t""t'\»ﬁ.o'_ .tf‘.& '..!sl.l._ .D!‘.t".l‘ FONCAN N M N 103'; W et VY

10

e C(M.5)==aAbAEX(@A —b)AAX(aA —b)
Wecan noW state the formula that characlerizes this structure;

RM.s,) = CM.s,) A '
AG(C(M.5) = EXC(M.5) A EXC(M.5,) A AX(C(M.5) V C(M.5,))) A
AG(C(M.5) = EXC(M.5) A AXC(M.5)) A
AG(C(M.5) = EXC(M,5) A AXC(M.s))

4. Equivalence With Respect To Stuttering
We first define what it means for two Kripke structures to be-equivalent with respect to stuttering. Given
two structures M and M’ with the same sct of atomic propositions, we define a sequence of equivalence

relations Ey, E,,... on SXS’ as follows:

o sEys’ if and only if L(s)=L(s").

o sk, s’ ifand only if

1. for every path # in M that starts in s there is a path «/ in M’ that starts in s/, a partition
B\8B,... of w, and a partition B{B; ... of m’ such that for all jeN, B; and Bj are both
non-empty and finite, and every state in Bj is E,-related to every state in B/, and

2. for every path #/ in M’ starting in s’ there is a path # in M starting in s that satisfics the
same condition as in 1.

Our notion of equivalence with respect to stuttering is defined as follows: sEs’ if and only if sE;s’ for all
i20. Furthermore, we say that M with initial state s, is equivalent to M’ with initial state s; if 5, E's}.

Lemma 12: Given two Kripke structures M and M’ there exists an / such that VsV's’ [sE;s’ iff sEs’).

Proof: By the definition of E,,,, sE;, s’ =5sE;s’,s0 E, D E,DE,.... Since M and M’ are both
finite, E, must be finite as well, so only a finite number of these containments can be proper. Let E; be the
last relation that is properly included in E,_,. By the definition of proper containment, Vmz IE;= E,) o
sE;s' =sEps’, for m2l. Since sE;s’ =sE_ s’ =sE_,s’ ..., we have sE;s' = Vm[sE,s’], so

sE;s’ = sEs’. The other direction is trivial. O

Theorem 13: If sE's’, then for every CTL" formula S without the nexttime operator, sk= fiff s/ F=1.
The proof is similar to that of thcorem 2.

Lemma 14: Given a Kripke structure M, for every state s¢ M, there is a CTL formula C(M.s) such that
VieM{1=C(Ms)iff sE1).

R,

‘-‘{1,'1{ .-' ‘.‘ 3

¥ >

T R eV LRI AT AT A7 D R R ST T e I Rt R I e AR
z LN, ” .. "‘r"(\.' N, N,

\t) ’l.;- ;B’u- ,3’1

D)

0
L aY

11

Proof: We will prove by induction on /:

o If —(sE;1), then therc is a CTL formula dj(s¢) such that Ve MsE;jv=vE=d(st)] and
tR= d(s.t).

o For every state se M, there is a CTL formula C;(M.s) such that for every te M, 1F=C/(M.s) iff
SEII.

di(s¢) is a formula that distinguishes between ¢ and states equivalent to s within the structure M, and

C/(M.s) is a formula that characterizes Ej-equivalence to state s within M.

If we let C;(M.s) be a conjunction of €,_, (M.s) and d(s.1) for every f that is not E,-related to s, the second
assertion foliows ecasily. By lemma 12, this condition implies that the lemma is true. Now it is necessary to

show how to construct d;(s,) by induction on /.

Basis (1=0): Let {p;} be the set of atomic propositions in £(s) and {g;} be the set of atomic propositions in
AP=L(s). Now, let
Co(Ms)=dy(st)= /’,\p,-A/j\ ~g;
It is clear that this formula is only true in states with the same labelling of atomic propositions as s. Therefore,
the base case is established.

Induction: Assume that the result is true for . We will show it for I+ 1.

Since =(sE;,, 1), either there is a path from s without a corresponding path from ¢, or vice versa. In the
latter case, we will use the argument below to find a d), , (4.5) such that tF=d,_,(¢s) and sk= d;,,(15). We
can negate this formula to get the desired d ., (s.7).

If there is a path from s without a corresponding path from ¢, we can divide this path into blocks (B,8,...)
such that:
Vilxe B;= x=C,(M firs(B;)) and firsi(B;,, |) ¥ C,(M first(B,))].
Now, there are two cases: either there is a finite path from one state without a corresponding path from the
other, or there is an infinite path without a corresponding path, but every finite prefix of this path has a
corresponding path.

In the first case, the path from s is finite, so the blocks are finite and there are only a finite number of them
(say n). Consider the CTL formula:
dp, (s0)=Cy(M. first(B)) A E[C (M first(B,)) U C(M.first(B,)) AE[... U C(M firsi(B,))...]
Itis clear that sk=dj, ,(s.t) along the path B8, ... B,. However, if 1= dj, (s.) then there is a path that can
be partitioned into blocks B] B} ... B, such that Vilve B = vi= C)(M.first(B))]. Since every state in B;

. CINNT e P g . P R P T L TR S S v P PN
L z'-‘\-«!tioi‘a AR .Q. ‘t'... '\'5 ,‘ N/ y s "‘E X ,'.)l :‘S. .A.q.‘ . “ by "

sssss »

3
-

LA A,

|

NN

KA ED

..v.‘
l\"\ﬁ "‘l‘-

y

g Ak Y "
¢ s cadava CatatAla’hla 408 872 27000 AN g LX) R Bt et A R " ' ale® glaeil "o

p

12

:_

| 1
} satisfics C,(A/.first(8;)). the inductive hypothesis and the definition of £ gives B,/ B7. "Therefore, this path ”
from f corresponds to the path from s, a contradiction. We conclude that 1¥ d; . (s.0). ”

In the second case, we start by showing that the path from s has only a finite number of blocks by using an :
.y . a

argument based on Konig's lemma. We can construct a tree rooted at ¢ such that #, . .. 1, is a path through .
‘ ¢

the trec if and only if there is a path in the Kripke structure tu, ... ugh, ... v, ... I, that corresponds to a){

prefix of the path from s with B] =<tu, ... u,>, B} =<4, ... v,> and 50 on. Now, if the path from s has an L
infinite number of blocks, this tree must have an infinite number of nodes. Otherwisc, if the tree had 2 nodes, <
there could be no path of length n+41, so the first n+1 blocks of the path from s would have no
corresponding path from ¢ Since the Kripke structure is finite, we also know that this trec must be finitely

branching. Thercfore, by Konig's lemma, there must be an infinite path through the trce. But this implies

« (-

that there is an infinite path from ¢ that can be divided into an infinite number of blocks that correspond to

the blocks of the path from s, so there is a path from ¢ corresponding to the path from s, violating our :
assumption. Therefore, the path from s has only a finite number of blocks. N
x
So, suppose that there are n blocks, all of which are finite except the last. Consider the CTL formula: ‘::
dp, 1 (s1)=C/(M.first(B,)) A E[C,(M.first(B,)) U C/(M.first(B,)) AE[... UEG C/(Mfirst(B,))]...] -
It is clear that sk=d; | (s,r) along the path B, B, ... B,. However, if (k= d; (s.!) then there is a path that can _.
be partitioned into blocks B{Bj... B such that all of the blocks are finite except B/ and .
"Vilve B} = vi=C /(M first(B;))]. Since every state in B; satisfies C,(M.first(B,)), the inductive hypothesis and 2
the definition of E; gives B;E;B]. We can also divide the infinite blocks 8, and B/, into an infinite set of :"
blocks containing one state each. Therefore, this path from ¢ corresponds to the path from s, so we have a :E‘
contradiction. We conclude that (k= g, (s.0). ' ‘
2
Now, these 4}, (s.7) describe the existence or nonexistence of a single path along which some C; formulas :::
hold. By the definition of sE;, v, every path from s has a corresponding path from v along which the same C, ',_
formulas hold and vice versa. Therefore, sE;,, v=viE=d), (st). 8
:
Therefore, the lemma is true. O i\ '
o™
Theorem 15: Given a Kripke structure M with initial state 5 there is a CTL formula F(M.s5)) that '.'\
characterizes that structure up to E-equivalence with respect to stuttering, i.e. M’ s} = F(M5) = $E5). \
A
Proof: For any state s in M, let s, ... s, be the extended successors of s, wherc an extended successor is a “:
)

state that is not E-related to s and is reachable from s along a path consisting entircly of states that are

E-equivalent to 5. Next, we construct G(M.s), which describes all of the transitions from s in M. In this

13

construction, it is convenient to usc the weak unnil operator, A[fWg]= —E[-gU=fA —g], which differs from

the ordinary until in that it permuts ain infinite path along which cvery state satisfics the first argument. So

now:
/\F[C(M.s)yU C(M.s)) A \[C(M.s) WVC(Ms)AEGC(Ms) if sEEGC(M.s) 2
G(Ms) = { 2
AF[C(M.5) U C(M.s,)] A A[C(M.5) chw.s,-)] A =EG C(M.s) otherwise -
i i
Let F(M.s,) be the formula C(M.5) A AAG (C(M.s) = G(M.s)). r
J .
The correcmcss_of F(M.s,) is an casy consequence of the next two lemmas and theorem 13. O
»
Lemma 16: sk= F(M.s).)
Lemma 17: If sk= F(M.1) and s’ = F(M.t), then sEs’. \
. 3
Proof of Lemma 16; Since every state is trivially equivalent to itself, sk=C(M.s) is tue by lemma 14, .
Therefore, if sk F(M,s) then there is a 1€ M such that sk= EF(C(M.{)A-G(M.1)). Let v be the state
reachable from s that satisfies C(M,1)A=G(M.1). By lemma 14, this condition implies ¢ E'v, so ¢ and v must
satisfy the same CTL formulas (theorem 13). We will show that (b= =G (M.1), giving a contradiction. There s
are four cases. ‘i
W
1. th= E[C(M.1) U C(M.w)), for some extended successor of f, w. By the definition of extended
successor, there is a path from ¢ to w and the states on this path are E-related to «. By lemma 14, :‘ :
these states must satisfy C(M.1). Since wi= C(M,w) is trivial, this path satsfies C(M.r) U C(M,w), ,
which is a contradiction. ':
L’
~
2. 1= EG C(M.1). Since EG C(M.1) is a conjunct of G(M,?) if and only if = EG C(M.1), we have L
an immediate contradiction. 5
o
3. 1= ~EG C(M,t). Since EG -C(M.t) is a conjunct of G(M.,t) if and only if (k= EG C(M.1), we
have an immediate contradiction. ,.‘
i
4, 1kt A[C(M.1) WVC(M w;)l. In this case, (= E[C(M.1) U(~C(M.1) A /\-|C(M w)l Letu, .. |
be this path, where 1, ~C(M.1) A /\—»C(Mw) and Vi<n[s F=C(Mt)] By lemma 14 5
=(t,E1r)and Vi<n [t,E1). Therefore 1, is an extended successor of 1. But since 1, = C(M.1,) is ;'
trivially true, ¢, = /1\ ~C(M.,w;) cannot be true, so we have a contradiction. :
¢
Therefore, the lemma is true. O]
‘- iy
;
.l
)
.* i

14

Proof of Lemma 17 Since s£s’ if and only if s&;s’ for all [20, we will prove sk= F(3M.r) and
s’ k= F(M.1) implics s £;5/ by induction on /.

Bdsis (t=0). Since sk=/F(M,t), sE=C(M.() and therefore sk=Cy(M.(). Similarly, s’ =Cy(M.1), so
L(s)=L()=L(s’). Thercfore, sEys’.

Induction: Assume that the result is true for . We will now show it for I+ 1.

We want to show that every path, =, from s has a corresponding path, #/ from s/. (The proof of the dual is
identical.) We will use induction on the length of & to prove the slightly stronger result:
If |w|<n, then therc is a corresponding path #’ such that for some veM,
last(w) b= F(M,v) and last(n ') &= F(M,v).
Basis (|w |=1): "a this case, w =<s>. Let B,=<s> and 7’ = B{ =<s’ >. By the outer inductive hypothesis,
sk= F(M.1) and s’ = F(M.1) imply sE;s’, so B, E; B]. Therefore, the paths correspond. Since the last states
- of each path satisfy F(M.,t), the base case is true.

Induction: Assume the result for |w|<n. Suppose that # =ss5,.. .5, a path of length n+1. Now,
55,8, . . . S, is a path of length n, so by the inner inductive hypothesis, there is a corresponding path #/ such
that last(#’) k= F(M.v) and s, = F(My) for some veM. Let BB,...B, and B{B;... B/, be the
partitions that show that these paths correspond. There are three cases.

L s, C(M.v). Since s5,, = F(M,v), we can infer that s,_, = A[C(M.v) WV C(M.w;)], where w, are the
extended successors of v. Since 5,5, is a path and s, that doesn’t satisfy C(M. vl), we conclude that there must
be an extended successor of v, x, such that s, = C(M.x). Since s, is a successor of s,..,, it must satisfy all of
the AG formulas that s,,_, satisfies, so s, = F(M.,x).

From lasi(#’) = F(M,v) we can infer that last(#’) k= C(M,v)AE[C(M.,v) U C(M.x)]. Therefore, there is a
path 5|5 ... s where s/ =last(n’), Vi< k[s) = C(M.v)], and sk =C(M.x). Nowletw=8, ... B,<s,> and
' =B] ... B _{Bp.s) ...k~ Xs" >, Since s, and s} both satisfy F(M.x), the outer induction
hypothesis gives <s,» E;<s}>. Similarly, since the all the states in B,,.B%,, and <s} ... s%.,> satisfy F(M.v),
they are all E; related to each other. Therefore, # and #’ correspond with lasi(#)k= F(M,x) and
last(n’) = F(M x).

2. s,/=C(M,v) and vi=EG C(M,v). Since s, must satisfy the same AG formulas as s,.,, s,= F(M.v).
Now, last(n’) = F(M.v), so last(w’) = EGC(M.v). Therefore, last(#’) must have a successor, s{. which also
satisfies C(M,v). Since this state must also satisfy all of the AG formulas, s F= F(M.v). Therefore, by the

outer induction hypothesis, s, £;s. Soif welet B, ., =<s,> and B/, , =<s]>, the paths correspond.

"

“w Ry ¥

A s B, -

R AR, PN TR

B,

111‘.11"’

S 5k

PRI

2 - IArD

. of " 2" ¥ & %

IS

hy

)
3. 5,F=C(M.v) and vk& EG C(M.v). By the rcasoning above, s, F= [F(M.v), so s, I7last(B%,). Therefore, w N,
corresponds to #/ with the same partition except that s, is added to B, . ,
We must also show that the blocks of the partitions are finite. The only problem is case 3, in which we *.:

might add an infinite number of states to a block of 7. In this casc, each of the states added to B, satisfy
F(M.,v), so if we add an infinite number of states to this block first(8,,) = EGC(A,v) must be true. But since
first(B,,) = F(M.v), first(B,,) = ~EGC(M.,v), so we have a contradiction. Therefore, all of the blocks of the =
partition must be finite.

5
Therefore, the lemma is true. O o
>
Corollary 18: Given two structures A/ and A’ with initial states s, and s respectively, 5, £'s; if and only if L
for all CTL" formulas Sfwithout the nexttime operator, M.5 = feo M’ s = f. E :
~
N
Corollary 19: Given two structures M and M’ with initial states s, and s{ respectively, if there is a formula o
of CTL" without the nexttime operator that is truc in one and false in the other, then there is also a formula of “
CTL without the nexttime operator that is true in the one and false in the other. ‘_'l,
4
Y
5. Algorithm For Stuttering Equivalence o
In this Section we show how to compute the relation for equivalence with respect to stuttering for states t
within a single Kripke Structure M. The method that we suggest is polynomial in the number of states of M. I:'
To determine equivalence between states in two different Kripke structures M, and M,, we form a Kripke 5
structure M|, that is the disjoint union of these structures and check equivalence between the corresponding "y
states in the combined structure. 3
We construct a relation C on S5 that is identical to the relation £ defined in Section4. C=MC, where R
n -
C, is defined as follows: ~
oG, = {(ss")] L(s)=L(s")} 3
o In order to define C,, ., we must first define the set NEXT, . ,(s) of extended successors of 5. We :3'
define this set in terms of the set ST, (s) of stuttering states of 5. ST, (s) = USTK () ‘
where, k
o ;|+1(5) = {S} A :.r
o ST 1(s) = STX, (s)U {s’ | s’ €STX, (s) A s €STX, (s’ = s’} A s Cys} :
NEXT,, (s) = {s’ | s’ €ST,,(s) A ds’/ €ST, . ,(s)s”" —s’]}. %
: i
We will also use a predicate 1. OOP,(s) that is true iff there is a cycle containing only states in ;:
ST (s). ::
A Y
-y

w,

. N
W

PEY T R L LA LN AL PN T PR PR T AT T R et L T T L O T o T I o UL o O e T T T e i S S T
2 G P R T T T L R G T A R (N A A TRt e e s T)

16

Now we can define C, . , as follows:

Cpey = {(557)| LOOP,, (s)=LOOP, (s’) A sCps’ A .
Vs, e NEXT,, (5)ds{ e NEXT,, (s)5, C, /] A
Vst eNEXT,, (s")35, e NEXT,, (s)ls, C,,5']

Proof that the relation C constructed above is actually equal to the rclation £ defined in Scction 4 will be
given in the journal version of this paper. Since the inductive structures of the definitions of the two relations
are different, it is necessary to split the proof into two parts: the first part shows that ECC; for every i; the "
second part shows that CC E; for every i. '

Computing ST, requires time O(|S}?). Computing C,,,, given C,, requires time O(|S]*), since at most |S}?
pairs of states must be checked and each pair requires O(|S]%) time to check. The algorithm terminates as soon N

as C, = C,. . Since at any previous step k, |C,.,| < |C,| and since C, has at most |S|? pairs of states, there

are at most {S|* steps in the construction of C. It follows that the complexity of the entire algorithm is O(|S]%).

If we replace each equivalence class of C by a single state, this algorithm can also be used to minimize the

Y,

number of states in the structure.

3

6. Conclusion

The results of our paper have a number of surprising implicétions. For example, if a specification of a finite
state concurrent program in CTL'is sufficiently detailed so that there is only one program (modulo one of
our notions of equivalence) that meets the specification, then an equivalent specification could have been
written in CTL instead. Another surprising consequence is that if a CTL"® formula is not equivalent to any (
CTL formula, then it must have an infinite number of mutually inequivalent finite models. To see that this
result is true, we first observe that since CTL" has the finite model property, it must be the case that if two -
CTL" formulas have the same finite models, they must have the same infinite modcls as well. Otherwise, if A
had an infinite model M that was not a model of £, f{ A =f; would have an infinite modcl, but no finite
models, contradicting the finite model property of CTL® [5]. Therefore, we can characterize a CTL" formula
by the set of finite models in which it is satisfied.- If a CTL"® formula is satisfied by only a finite number of
equivalence classes of finite models, then the formula is equivalent to the disjuction of the CTL formulas that g

characterize the individual equivalence classes. S

There are a number of directions for further research. First, from our construction, it appears that the '_:

characteristic formula of a Kripke structure might be quite large. It would be nice to have a lower bound on

NP

the size of this formula in terms of the size of the Kripke structure. Also, we conjecture that the O(|S]%)

L
]

algorithm in Section 5 can be improved significantly. Finally, it would be interesting to sce which of our

results carry over to Kripke structures with fairness constraints, i.e. Biichi automata.

AT -.‘-,

o

L

.............................
.......
.

s
17
Y
References fﬁ
n*
1. M. Ben-Ari, A. Pnucli, Z. Manna. "The Temporal Logic of Branching Time". Actua [nformatica 20 (1983), :!
-207-226. ¢
i,
2. EM. Clarke, E.A. Emerson. Design and Synthcsis of Synchronization Skelctons using Branching Time :_’.
Temporal Logic. Proccedings of the Workshop on Logic of Programs, Yorktown-Heights, NY, Lectuic Notes \‘_
in Computer Science #131, 1981. ::i :
Y
3. EM. Clarke, E.A. Emcrson, A.P. Sistla. Automatic Verification of Finitc-State Concurrent Systems using ;
Temporal Logic Specifications: A Practical Approach. Tenth ACM Symposium on Principles of "
Programming Languages, Austin, Tcxas, 1983, pp. 117-126. I
-‘\ '
4. E.A. Emerson, J.Y. Halpern. "Somectimes” and "Not Never” Revisited: On Branching versus Linear Time ':; ‘
Temporal Logic. Proceedings of the ACM Symposium on Principles of Programming Languages, Association S
for Computing Machinery, Austin, Texas, January, 1982. to appear in JACM. o
-~
5. E. A. Emerson and P. Sistla. Deciding Full Branching-time Logic. The Sixteenth Annual ACM ;::
Symposium on Theory of Computing, Association for Computing Machinery, Washington, D.C., May, 1984. ay
.:\
6. S. Grafand J. Sifakis. From Synchronization Tree Logic to Acceptance Model Logic. LNCS Vol. 193, }:
Logics of Programs, 1985. X
7. M. Hennessy atid R. Milner. On Observing Nondeterminism and Concurrency. LNCS VoL, 85, 7Tth
ICALP, 1980. :-:
8. G.E. Hughes and M.J. Creswell. An Introduction to Modal Logic. Methuen and Co., 1977. =
9. L. Lamport. "Sometimes” is Sometimes "Not Never”. Seventh Annual ACM Symposium on Principles of .,:'
Programming Languages, Association for Computing Machinery, Las Vegas, January, 1980, pp. 174-185. :-j:
. e
10. L. Lamport. What Good is Temporal Logic? Proceedings of the International Federation for -y
Information Processing, 1983, pp. 657-668. o,
~
11. O. Lichtenstein and A. Pnueli. Checking that Finite State Concurrent Programs Satisfy Their Linear .
Specification. Conference Record of the Twelth Annual ACM Symposium on Principles of Programming
Languages, New Orleans, La., January, 1985. ‘ e
12. R. Milner. Lecture Notes in Computer Science. Volume 92: A Calculus of Communicating Systems. :f- g
Springer-Verlag, 1979.
13. B. Mishra and E. Clarke. "Hierarchical Verification of Asynchronous Circuits using Temporal Logic™. o
Theoretical Computer Science 38 (1985), 269-291 . B
14. Z. Manna, P. Wolper. "Synthesis of Communicating Processes from Temporal Logic Specifications”. Z:-::
" ACM Transactions on Programming Languages and Systems 6 (1984), 68-93. -
15. A. Pnueli. Linear and Branching Structures in the Semantics and Logics of Reactive Systems. }
Proceedings of the 12th ICALP, 1985. Lecture Notes in Computer Science # 194, Springer- Verlag. .';:;
Al
16. A.P. Sistla, EM. Clarke. "Complexity of Propositional Linear Temporal Logics”. Journal of the -f
Association for Computing Machinery 32, 3 (July 1985), 733-749. 7
™
2
4]
o
~
]

.
ol
> .

<

18

17. M.Y. Vardi. P. Wolper. An automata-theoretic approach to automatic program verification. Logic In
Computer Scicnce, Cambrideg, Massachusetts, June, 1986 .

roFIres
AARR |

18. P. Wolper. Spccification and Synthesis of Communicati'ng Processes Using an Extended Temporal Logic.
Ninth Annual ACM Symposium on Principles of Programming Languages, Association for Computing '~
Machinery, Albuquerque, New Mexico, January, 1982, pp. 20-33. . 'S

-
-(
]

PR
" ‘s s

e,

> 8V ®

) e {‘{ (4 ."-"{

AT

,'.':‘(l;.

Ly

333,

’A

P g

.'4‘
[3

S

L4

N S S P RPN
S ey e o e s S

Lo aim

D

.

KRGO

‘.
<

K

o

e

L

-

